首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88篇
  免费   2篇
  国内免费   1篇
测绘学   3篇
大气科学   23篇
地球物理   16篇
地质学   33篇
海洋学   8篇
天文学   4篇
自然地理   4篇
  2023年   1篇
  2021年   1篇
  2020年   2篇
  2019年   3篇
  2018年   2篇
  2017年   3篇
  2016年   2篇
  2015年   6篇
  2014年   4篇
  2013年   10篇
  2012年   4篇
  2011年   5篇
  2010年   5篇
  2009年   9篇
  2008年   6篇
  2007年   8篇
  2006年   7篇
  2005年   4篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1994年   1篇
排序方式: 共有91条查询结果,搜索用时 31 毫秒
61.
The role of microbial sulfate reduction on organic matter oxidation was studied quantitatively in temperate intertidal surface sediments of the German Wadden Sea (southern North Sea) on a seasonal base in the years 1998–2007. The sampling sites represent the range of sediments found in the back-barrier tidal area of Spiekeroog Island: sands, mixed and muddy flats. The correspondingly different contents in organic matter, metals, and porosities lead to significant differences in the activity of sulfate-reducing bacteria with volumetric sulfate reduction rates (SRR) in the top 15 cm of up to 1.4 μmol cm?3 day?1. Depth-integrated areal SRR ranged between 0.9 and 106 mmol m?2 day?1, with the highest values found in the mudflat sediments and lower rates measured in sands at the same time, demonstrating the impact of both temperature and organic matter load. According to a modeling approach for a 154-km2 large tidal area, about 39, 122, and 285 tons of sulfate are reduced per day, during winter, spring/autumn, and summer, respectively. Hence, the importance of areal benthic organic matter mineralization by microbial sulfate reduction increases during spring/autumn and summer by factors of about 2 and 7, respectively, when compared to winter time. The combined results correspond to an estimated benthic organic carbon mineralization rate via sulfate reduction of 78 g C m?2 year?1.  相似文献   
62.
Every day new extraordinary properties of nanoparticles (a billionth of a meter) are discovered and worldwide millions are invested into nanotechnology and nanomaterials. Risks to marine organisms are still not fully understood and biomarkers to detect health effects are not implemented, yet. We used the filter feeding blue mussel as a model to analyse uptake and effects of nanoparticles from glass wool, a new absorbent material suggested for use in floating oil spill barriers. In both, gills and hepatopancreas we analysed uptake of nanomaterials by transmission electronmicroscopy (TEM) in unstained ultrathin sections over a period of up to 16 days. Lysosomal stability and lipofuscin content as general indicators of cellular pathology and oxidative stress were also measured. As portals of uptake, diffusion and endocytosis were identified resulting in nanoparticle accumulation in endocytotic vesicles, lysosomes, mitochondria and nuclei. Dramatic decrease of lysosomal membrane stability occurred after 12h of exposure. Lysosomal damage was followed by excessive lipofuscin accumulation indicative of severe oxidative stress. Increased phagocytosis by granulocytes, autophagy and finally apoptosis of epithelial cells of gills and primary and secondary digestive tubules epithelial cells indicated progressive cell death. These pathological responses are regarded as general indices of toxic cell injury and oxidative stress. By the combinational use of biomakers with the ultrastructural localisation of nanoparticle deposition, final evidence of cause-effect relationships is delivered.  相似文献   
63.
During a field study performed in spring and autumn 2001 and 2002, blue mussels (Mytilus edulis) and female eelpout (Zoarces viviparus) were collected at three locations in the Wismar Bay (Baltic Sea), and several biomarkers of contaminant effects were analysed. Besides seasonal and inter-annual variations, biomarker signals were most pronounced at the location closest to Wismar Harbour (Wendorf) in both species. Lysosomal membrane stability (LMS) was lowest and acetylcholinesterase activity (AChE) was significantly reduced. Frequency of micronuclei (MN) was significantly higher (in blue mussels), indicating mutagenic effects. In eelpout elevated levels of DNA adducts, EROD induction and PAH-metabolites were measured. Metallothionein (MT), biomarker for trace metal exposure, showed a gradient only in spring. Organochlorine contaminant analyses (PCBs, DDTs) corresponded to the observed biomarker levels. The results obtained clearly demonstrate pollution effects in the southwestern Baltic Sea. Moreover, they show that a multibiomarker approach is also applicable in a brackish water environment.  相似文献   
64.
Fe isotopes are a potential tool for tracing the biogeochemical redox cycle of Fe in the ocean. Specifically, it is hypothesized that Fe isotopes could enable estimation of the contributions from multiple Fe sources to the dissolved Fe budget, an issue that has received much attention in recent years. The first priority however, is to understand any Fe isotope fractionation processes that may occur as Fe enters the ocean, resulting in modification of original source compositions. In this study, we have investigated the Fe inputs from a basalt-hosted, deep-sea hydrothermal system and the fractionation processes that occur as the hot, chemically reduced and acidic vent fluids mix with cold, oxygen-rich seawater.The samples collected were both end-member vent fluids taken from hydrothermal chimneys, and rising buoyant plume samples collected directly above the same vents at 5°S, Mid-Atlantic Ridge. Our analyzes of these samples reveal that, for the particulate Fe species within the buoyant plume, 25% of the Fe is precipitated as Fe-sulfides. The isotope fractionation caused by the formation of these Fe-sulfides is δFe(II)–FeS = +0.60 ± 0.12‰.The source isotope composition for the buoyant plume samples collected above the Red Lion vents is calculated to be −0.29 ± 0.05‰. This is identical to the value measured in end-member vent fluids collected from the underlying “Tannenbaum” chimney. The resulting isotope compositions of the Fe-sulfide and Fe-oxyhydroxide species in this buoyant plume are −0.89 ± 0.11‰ and −0.19 ± 0.09‰, respectively. From mass balance calculations, we have been able to calculate the isotope composition of the dissolved Fe fraction, and hypothesize that the isotope composition of any stabilised dissolved Fe species exported to the surrounding ocean may be heavier than the original vent fluid. Such species would be expected to travel some distance from areas of hydrothermal venting and, hence, contribute to not only the dissolved Fe budget of the deep-ocean but also it’s dissolved Fe isotope signature.  相似文献   
65.
Abstract— Here we present the first purely physical model for cosmogenic production rates in iron meteorites with radii from 5 cm to 120 cm and for the outermost 1.3 m of an object having a radius of 10 m. The calculations are based on our current best knowledge of the particle spectra and the cross sections for the relevant nuclear reactions. The model usually describes the production rates for cosmogenic radionuclides within their uncertainties; exceptions are 53Mn and 60Fe, possibly due to normalization problems. When an average S content of about 1 ± 0.5% is assumed for Grant and Carbo samples, which is consistent with our earlier study, the model predictions for 3He, 21Ne, and 38Ar are in agreement. For 4He the model has to be adjusted by 24%, possibly a result of our rather crude approximation for the primary galactic α particles. For reasons not yet understood the modeled 36Ar/38Ar ratio is about 30–40% higher than the ratio typically measured in iron meteorites. Currently, the only reasonable explanation for this discrepancy is the lack of experimentally determined neutron induced cross sections and therefore the uncertainties of the model itself. However, the new model predictions, though not yet perfect, enable determining the radius of the meteoroid, the exposure age, the sulphur content of the studied sample as well as the terrestrial residence time. The determination of exposure ages is of special interest because of the still open question whether the GCR was constant over long time scales. Therefore we will discuss in detail the differences between exposure ages determined with different cosmogenic nuclides. With the new model we can calculate exposure ages that are based on the production rates (cm3STP/(gMa)) of noble gases only. These exposure ages, referred to as noble gas exposure ages or simply 3,4He, 21Ne, or 36,38Ar ages, are calculated assuming the current GCR flux. Besides calculating noble gas ages we were also able to improve the 41K‐40K‐and the 36Cl‐36Ar dating methods with the new model. Note that we distinguish between 36Ar ages (calculated via 36Ar production rates only) and 36Cl‐36Ar ages. Exposure ages for Grant and Carbo, calculated with the revised 41K‐40K method, are 628 ± 30 Ma and 841 ± 19 Ma, respectively. For Grant this is equal to the ages obtained using 3He, 21Ne, and 38Ar but higher than the 36Ar‐ and 36Cl‐36Ar ages by ?30%. For Carbo the 41K‐40K age is ?40% lower than the ages obtained using 3He, 21Ne, and 38Ar but equal to the 36Ar age. These differences can either be explained by our still insufficient knowledge of the neutron‐induced cross sections or by a long‐term variation of the GCR.  相似文献   
66.
Abstract— Cosmogenic He, Ne, and Ar were measured in the iron meteorites Grant (IIIAB) and Carbo (IID) to re‐determine their preatmospheric geometries and exposure histories. We also investigated the influence of sulphur‐ and/or phosphorus‐rich inclusions on the production rates of cosmogenic Ne. Depth profiles measured in Grant indicate a preatmospheric center location 117 mm left from the reference line and 9 mm below bar B, which is clearly different (?10 cm) from earlier results (?165 mm left from the reference line on bar F). For Carbo the preatmospheric center location was found to be 120 mm right of the reference line and 15 mm above bar J, which is in agreement with literature data. The new measurements indicate a spherical preatmospheric shape for both meteorites and, based on literature 36C1 data, the radii were estimated to be about 32 cm and 70 cm for Grant and Carbo, respectively. We demonstrate that minor elements like S and P have a significant influence on the production rates of cosmogenic Ne. In our samples, containing on average 0.5% S and/or P, about 20% of 21Ne was produced from these minor elements. Using measured 21Ne concentrations and endmember 22Ne/21Ne ratios for Fe + Ni and S + P, respectively, we show that it is possible to correct for 21Ne produced from S and/or P. The thus corrected data are then used to calculate new 41K‐40K exposure ages—using published K data—which results in 564 ± 78 Ma for Grant and 725 ± 100 Ma for Carbo. The correction always lowers the 21Ne concentrations and consequently decreases the 41K‐40K exposure ages. The discrepancies between 36Cl‐36Ar and 41K‐40K ages are accordingly reduced. The existence of a significant long‐term variation of the GCR, which is based on a former 30–50% difference between 41K‐40K and 36Cl‐36Ar ages, may warrant re‐investigation.  相似文献   
67.
The sorption of Np(V) and Np(IV) onto kaolinite has been studied in the absence and presence of humic acid (HA) in a series of batch equilibrium experiments under different experimental conditions: [Np]0: 1.0 × 10-6 or 1.0 × 10-5 M, [HA]0: 0 or 50 mg/L, I: 0.01 or 0.1 M NaClO4, solid to liquid ratio: 4 g/L, pH: 6–11, anaerobic or aerobic conditions, without or with carbonate. The results showed that the Np(V) sorption onto kaolinite is affected by solution pH, ionic strength, Np concentration, presence of carbonate and HA. In the absence of carbonate, the Np(V) uptake increased with pH up to ∼96% at pH 11. HA further increased the Np(V) sorption between pH 6 and 9 but decreased the Np(V) sorption between pH 9 and 11. In the presence of carbonate, the Np(V) sorption increased with pH and reached a maximum of 54% between pH 8.5 and 9. At higher pH values, the Np(V) sorption decreased due to the presence of dissolved neptunyl carbonate species with a higher negative charge that were not sorbed onto the kaolinite surface which is negatively charged in this pH range. HA again decreased the Np(V) uptake in the near-neutral to alkaline pH range due to formation of aqueous neptunyl humate complexes. The decrease of the initial Np(V) concentration from 1.0 × 10−5 M to 1.0 × 10−6 M led to a shift of the Np(V) adsorption edge to lower pH values. A higher ionic strength increased the Np(V) uptake onto kaolinite in the presence of carbonate but had no effect on Np(V) uptake in the absence of carbonate.  相似文献   
68.
This study reports the influence of a 20th century pollution signal recorded in the δ13C and δ18O of absolutely dated tree rings from Quercus robur and Pinus sylvestris from southern England. We identify a correspondence between the inter-relationship and climate sensitivity of stable isotope series that appears to be linked to recent trends in local SO2 emissions. This effect is most clearly exhibited in the broadleaved trees studied but is also observed in the δ13C values of the (less polluted) pine site at Windsor. The SO2 induced stomatal closure leads to a maximum increase of 2.5‰ in the isotope values (δ13C). The combined physiological response to high pollution levels is less in δ18O than δ13C. The SO2 signal also seems to be present as a period of reduced growth in the two ring-width chronologies. Direct, quantitative correction for the SO2 effect represents a significant challenge owing to the nature of the records and likely local plant response to environmental pollution. Whilst it appears that this signal is both limited to the late industrial period and demonstrates a recovery in line with improvements in air quality, the role of atmospheric pollution during the calibration period should not be underestimated and adequate consideration needs to be taken when calibrating biological environmental proxies in order to avoid development of biased reconstructions.  相似文献   
69.
The Central Atlantic Magmatic Province (CAMP) is one of the largest igneous provinces on Earth, extending more than 5000 km north to south, on both sides of the Atlantic Ocean. Its emplacement occurred about 200 Ma ago, at the Triassic–Jurassic boundary, and is linked to the initial breakup of Pangaea. Two areas of the province are studied here: French Guyana/Surinam (South America) and Guinea (West Africa), in order to document the petrogenesis and geodynamical significance of high-Ti and low-Ti basaltic magmas from the CAMP.

In Guyana, doleritic and gabbroic dykes are located on the edge of the Guiana Shield, and represent limited volumes of magma. They display low SiO2 (47–50%), high TiO2 (2.5–3.5%) and high FeO tholeiitic trends and show variably enriched trace element patterns ((La/Yb)n=1.5–5.1). Their isotopic signature and ratios of very incompatible elements (εNdi=+5.8 to +4.2, (87Sr/86Sr)i=0.703–0.705, (207Pb/204Pb)i=15.46–15.64) match a depleted PREMA (prevalent mantle)-like source. Their genesis can be modeled by ca. 15% partial melting of a lherzolite source, and a subsequent limited fractional crystallization (5–10%) or a slight upper crustal assimilation–fractional crystallization (AFC, r=0.1, Proterozoic contaminant). In Guinea, in contrast, huge volumes of CAMP magmas were intruded along the Rockelides suture and the West African craton, forming the Fouta Djalon sills and the Kakoulima laccolith. The laccolith is more than 1000 m thick. These features consist of gabbros, dolerites, diorites and mafic (gabbro) and ultramafic (dunite, wherlite) cumulates. Guinean tholeiites show high SiO2 (51–58%), low TiO2 (0.7–1.2%) and FeO trends, with high LILE/HFSE ratios and slight negative Nb–Ta anomalies. Isotopic signatures (εNdi=+0.4 to −5.3, (87Sr/86Sr)i=0.705–0.710, (207Pb/204Pb)i=15.57–15.66) indicate a more enriched source than for Guyana as well as a higher rate of magma–upper crust interaction through an AFC process (r=0.3, Birimian crust contaminant) and, probably, an additional upper crustal contamination for the most differentiated sample.

This geochemical study supports the prevalence in Guinea, as for other low-Ti CAMP tholeiites, of a lithospheric mantle source, previously enriched during ancient subduction events, and preferentially reactivated in late Triassic times by edge-driven convection between cratonic and mobile belt domains. A larger contribution from a depleted asthenospheric source is required to generate high-Ti tholeiites in Guyana, which may reflect the development of CAMP rifting towards the initiation of the Central Atlantic oceanic crust.  相似文献   

70.
Several Eemian (Mikulino) marine deposits are known from the northwestern part of Russia and from Estonia. The best-known deposits are situated at Mga, Russia and at Prangli, Estonia. Two new sites with clayey and silty deposits covered by till were studied for pollen and diatoms at Peski, Russia and Põhja-Uhtju, Estonia. At Peski, the deposit representing the Eemian Interglacial is 3.8 m thick at the depth of 13.4–9.6 m above present sea-level. At Põhja-Uhtju, the deposit representing the Eemian is 3.5 m thick at the depth of 47.9–51.4 m below present sea-level. Although Peski is situated at a higher altitude than Põhja-Uhtju at present, the diatom stratigraphy at these sites indicates deeper and more saline conditions in the Peski area than at Põhja-Uhtju during the Eemian. This result is similar to some previous studies, which indicate, that although the Russian deposits (e.g. Peski, Mga) are now at a higher altitude than those in Estonia (Põhja-Uhtju and Prangli), the diatoms in the Russian deposits are indicative of a considerable depth of water during the time of deposition. These deposits suggest that the Eemian shore levels ascend from Estonia eastwards, while the Late Weichselian and Holocene shorelines tilt downwards in the same general direction. The present material from Estonia and northwestern part of Russia shows marked differences between the Eemian and Late Weichselian/Holocene crustal deformations, which probably resulted from different ice loads during the final glaciation phases and probably also from different deglaciation patterns during the Saalian and Late Weichselian.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号